

Responses to cold stress

- Vasoconstriction
 - decreases heat loss 25-50%.
- Non-shivering thermogenesis

Inc metabolic activity without muscular activity
Brown fat, 1st 2 yrs of life

Prematures can double the metabolic rate

Shivering

Older children

Responses to heat stress

- Sweating
 - Post ganglionic cholinergic NF Effective defense --hyperthermia. Atropine (o.5mg) impairs increasing threshold & reducing gain.
- Active pre-capillary vasodilation

Increases Cutaneous BF enormously.
Unique human response
Imm area of skin blood flow equals CO

What else...

- Nearly constant core temperature
- Peripheral tissue temperature falls
- 1°-5°C core-peripheral temperature gradient
- Legs Peripheral thermal buffer (anatomic mass) allow individual to lose heat in a cold environment or absorbs heat in a warm environment without altering the core body temperature.
- When core temp falls <36°C it is termed as Perioperative Hypothermia

Pattern of Intraoperative Hypothermia

Initial phase

- -Redistribution Hypothermia
- Peripheral vasodilation & opening of AV shunts
- Redistribution Core body heat- periphery
- Core Temp Falls 1.0-1.5°C 1st hour

Hypothermia...

2nd phase-

Core Temperature falls as heat loss > heat production

Around 90% by radiation and convection 5% by evaporation and 5% by conduction

Plateau phase

After 3-5 hrs when heat loss =heat production Normal core-to-peripheral temperature gradient Restored

But at a hypothermic level (33°C core body temperature)

How children are different

- Globular bodies-
 - -Larger fractions of mass in the torso
 - -Head larger fraction of surface area
 - -Redistribution contributes less to intraop hypothermia
- Cutaneous heat loss α surface area
 Metabolic heat production α mass
- Children lose more heat via skin as compared to heat production
- But Thermoregulatory vasoconstriction is well maintained once triggered it helps prevent further hypothermia.

Regional Anaesthesia

Interferes with

- Afferent transmission of thermal signal are altered hence blocked area is sensed as warm area
- Inhibition of vasoconstriction-- hypothermia 1st hour
- Vasodilation produced -minimally increases cutaneous heat loss
- Metabolic heat production =/+

CONSEQUENCES OF HYPOTHERMIA

Benefits

- Marked protection against tissue ischemia and hypoxia
- Temperatures of 25-30°C have been used for cerebral protection during CP Bypass
- Just 2-3°C core hypothermia provides more protection against ischemia than any other pharmacological treatment, e.g., neurosurgery.

CONSEQUENCES OF HYPOTHERMIA

Risks-

- Patient discomfort
- Increased bleeding(decreased platelet function)
- Increased duration of action of drugs like atracurium and vecuronium
- Mild hypothermia triples SSI (impaired immune function and reduced cutaneous blood flow) Level I Gr B
- Shivering increases
 - Oxygen consumption(200%)
 - Pain, intra-ocular and intra-cranial pressures.

Safety of Warming Devices One report – 2nd & 3rd Degree burns in 3yr old child after CP bypass, *Truell & Colleagues*Potential risk of SSI with Forced air devices – the microbes found were not the ones causing SSI *Avidan & Colleagues*

How to maintain Normothermia

- Monitor temperature (15min/continuously)
- Maintain temperature
 - -Shifting to OT
 - -Peri-operatively
- Pre-warming
- Active Warming if Temp <36°C
- Passive Cutaneous warming
- Warm IV, Irrigation Fluids
- Limit skin exposure
- Keep Ambient temp >23°C

HYPERTHERMIA & FEVER

- A core body temperature exceeding normal values is hyperthermia.
- It does not imply a specific etiology or mechanism
- Fever is a regulated increase in core temperature mediated by endogenous pyrogens and actively maintained by thermoregulatory responses.

Malignant Hyperthermia

- MH is an acute hypermetabolic syndrome triggered by succinylcholine and volatile anaesthetics.
- Onset of MH fulminant & rapid
- Symptoms skeletal muscle rigidity, hypercarbia, fever
- Can progress within 30 minutes to a premorbid state in which the arterial pH is as low as 6.6 units
- Central thermoregulation is maintained during MH
- Temperature increases because continuous muscle contracture generates more heat than the body can dissipate to the environment.

Treatment

- Hyperventilation with 100% O₂
- IV Dantrolene 2.5 mg/kg initially, followed by 6 hourly doses till 24 hrs
- Sodium Bicarbonate 1-2 mEq /kg IV, if PaCO₂ is normal and pH is low
- Frequent ABG, Electrolytes, Serum CPK levels are required.
- In-vitro caffeine/ halothane contracture test reliably diagnoses the syndrome.

